Heterogeneous Multilayer Generalized Operational Perceptron
نویسندگان
چکیده
منابع مشابه
Multilayer Perceptron Training
In this contribution we present an algorithm for using possibly inaccurate knowledge of model derivatives as a part of the training data for a multilayer perceptron network (MLP). In many practical process control problems there are many well-known rules about the eeect of control variables to the target variables. With the presented algorithm the basically data driven neural network model can ...
متن کاملMultilayer Perceptron Algebra
Artificial Neural Networks(ANN) has been phenomenally successful on various pattern recognition tasks. However, the design of neural networks rely heavily on the experience and intuitions of individual developers. In this article, the author introduces a mathematical structure called MLP algebra on the set of all Multilayer Perceptron Neural Networks(MLP), which can serve as a guiding principle...
متن کاملAuto-kernel using multilayer perceptron
This work presents a constructive method to train the multilayer perceptron layer after layer successively and to accomplish the kernel used in the support vector machine. Data in different classes will be trained to map to distant points in each layer. This will ease the mapping of the next layer. A perfect mapping kernel can be accomplished successively. Those distant mapped points can be dis...
متن کاملMultilayer Perceptron for Label Ranking
Label Ranking problems are receiving increasing attention in machine learning. The goal is to predict not just a single value from a finite set of labels, but rather the permutation of that set that applies to a new example (e.g., the ranking of a set of financial analysts in terms of the quality of their recommendations). In this paper, we adapt a multilayer perceptron algorithm for label rank...
متن کاملA New Method of Multilayer Perceptron Encoding
One of the central issues in neural network research is how to find an optimal MultiLayer Perceptron architecture. The number of neurons, their organization in layers, as well as their connection scheme have a considerable influence on network learning, and on the capacity for generalization [7]. A solution to find out these parameters is needed: The neuro-evolution ([1,2,4,5]). The novelty is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2020
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2019.2914082